Pseudo-Numeric Identifiers
Let’s say you’re a programmer, and your application uses Library of Congress Control Numbers for books, e.g., 2001012345, or ZIP codes, like 90210. What data types would you use to represent them? Or maybe something like the Dewey Decimal System, which uses 320 to classify a book as Political Science, 320.5 for Political Theory, and 320.973 for “Political institutions and public administration (United States)”?
If you said “integer”, “floating point”, or any kind of numeric type, then clearly you weren’t paying attention during the title.
The correct answer was “string” (or some kind of array of tokens), because although these entities consist of digits, they’re not numbers: they’re identifiers, same as “root” or “Jane Smith”. You can assign them, sort them, group them by common features, but you can’t meaningfully add or multiply them together. If you’re old enough, you may remember the TV series The Prisoner or Get Smart, where characters, most of them secret agents, refer to each other by their code numbers all the time; when agents 86 and 99 team up, they don’t become agent 185 all of a sudden.
If you keep in mind this distinction between numbers, which represent quantities, and strings that merely look like numbers because they happen to consist entirely of integers, you can save yourself a lot of grief. For instance, when your manager decides to store the phone number 18003569377 as “1-800-FLOWERS”, dashes and all. Or when you need to store a foreign phone number and have to put a plus sign in front of the country code.